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Abstract
We study the stopping power and friction coefficient of a slow charged particle moving parallel
to noble metal (111) surfaces. In the description of the surface electronic structure, information
about a wide energy gap at the surface Brillouin zone, at the Fermi level, and the partly
occupied s–pz surface state is introduced via the use of a model potential. The stopping power,
S(b, υ), and friction coefficient, γ (b, υ), versus the projectile velocity υ and its distance from
the surface b are investigated within linear response theory with self-consistent evaluation of the
surface response function. The present calculations demonstrate the striking differences in the
behavior of S(b, υ) and γ (b, υ) in comparison with those obtained from simpler models. In
particular, for very low velocities, S(b, υ) and γ (b, υ) decay as b−3 at large b, mainly due to
the electron–hole excitations within the surface state, instead of the ∼b−4 behavior expected
from a jellium model. For velocities close to the surface state Fermi velocity, υSS

F , the energy
losses with characteristic ∼b−2 decay are dominated by the excitation of the acoustic surface
plasmons that can exist at some surfaces with partly occupied surface states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the energy loss of ions interacting with metal
surfaces has been an active field of research for many years [1].
Various experiments have provided information about the
energy losses experienced by protons [2–4] and heavy ion
projectiles [5–7] under grazing scattering conditions. In the
analysis of results of these experiments, a central quantity
is the so-called distance dependent stopping power, i.e. the
energy lost per unit path length by the ion traveling parallel
to the metal surface, as a function of the ion surface separation.
Echenique and Pendry [8] used a local response function to
calculate this quantity and applied it to the calculation of the
energy losses of fast electrons traveling parallel to a planar
surface. The applicability of the local response approach was

extended to different geometries when it was shown to provide
a powerful method to obtain all the multipole contributions
to the energy loss probability for electrons interacting with
dielectric spheres [9].

In later works, in order to extend the validity of
the calculations to lower projectile velocities, wavevector
dependent surface dielectric functions were used [10–15].
These calculations were based on the specular reflection
model [16, 17]. This model allows us to obtain the surface
response function in terms of the bulk response function.
The approximation used in the specular reflection model
assumes that the conduction electrons are confined by an
infinite potential barrier at the surface, and the quantum
interference between the outgoing and ingoing components of
the electrons reflected at this barrier is neglected. In a different
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Figure 1. Electronic structure of the Cu(111) surface around the
surface Brillouin zone center. A parabolic-like surface state
dispersion with experimental effective mass m∗

SS = 0.42me and
binding energy ESS = 0.44 eV is shown by a thick solid line. The
gray area represents the projected bulk electronic states. The energies
are relative to the Fermi level shown by the thin horizontal line.

approach, Gravielle and collaborators [18, 19] studied the
interaction of a charged particle with the conduction electrons
bounded by a finite step potential at the surface. This model
describes single particle excitations (electron–hole creation)
but does not include collective excitations (plasmons). More
recently [20–23], the distance dependent stopping power has
been obtained from calculations in which the Kohn–Sham
formulation of the density functional theory was used to
calculate self-consistently a finite and smooth surface potential
barrier. In these works, the jellium model was used to describe
the conduction band of the metal; the ionic background made
up of nuclei and core electrons was replaced by a uniform
positive charge distribution. In [20, 21] the Kohn–Sham
orbitals were used to construct the response function of the
system in the random phase approximation [24, 25]. In [22, 23]
exchange and correlation effects were also included in the
calculation of the response within the so-called adiabatic local
density approximation [26]. Nevertheless, it was observed
that the stopping power for a particle traveling parallel to a
metal surface was almost insensitive to this correction. On
the contrary, the use of a self-consistently calculated finite
surface barrier improved significantly the results obtained
within the specular reflection model, for both the stopping
power and the total energy loss, up to velocities of the order
of v = 2–3v0 (v0 is the Bohr velocity) [20, 21]. At higher
velocities, the specular reflection model showed to be a reliable
approximation.

Finally, for a more realistic description of the energy
loss of charged particles moving near metal surfaces [27–31],
the Kohn–Sham potential used in the self-consistent jellium
calculations [20–23] has been replaced by a realistic model
potential [32, 33] that reproduces the width and position
of the surface band gap, the energies of the surface state,
and the first image state of the metal under study. For the
Cu(111) surface and projectile velocities v > v0, it was
shown that although this surface exhibits a wide band gap

Cu (111)

Surface State

Figure 2. Total (solid line) and surface state (dashed line) charge
density at the Cu(111) surface as obtained with the use of a model
potential of [32]. The colored area corresponds to the solid and the
vacuum is on the right side. The vertical dotted lines show the atomic
plane positions.

around the Fermi level and a well-defined Shockley surface
state the energy loss expected from this model does not differ
significantly from its jellium counterpart. This is due to the
fact that the presence of the surface state compensates for the
reduction of the energy loss due to the band gap [27, 28].
However, recently it has been demonstrated that, due to its
two-dimensional character, these surface states can strongly
modify the dielectric properties of metal surfaces [31], where
the behavior of the friction coefficient for a very slowly moving
ion in front of the surface has been investigated. Thus the
stopping power of the Cu(111) surface scales as b−3, in
contrast to the known b−4 scaling for electron–hole excitations
in a jellium surface [10], where b is the projectile–surface
distance.

Here we extend the calculations to higher velocities
(keeping the projectile velocity below the Bohr value) to
investigate the effect of the acoustic surface plasmon on
the energy loss for surfaces with partly occupied surface
states [34]. The (111) surfaces of noble metals Cu, Ag,
and Au are precisely known to support a partially occupied
electron band of the Shockley surface state at the surface
Brillouin zone center, � [35–37]. This state has a parabolic-
like dispersion with two-dimensional momentum k parallel to
the surface and its wavefunction is strongly localized near the
surface (see figure 1 for the Cu(111) surface case). Therefore,
it forms a quasi-two-dimensional surface state band with a
Fermi energy, ESS

F , equal to the surface state binding energy
at the � point. This surface state is immersed in the sea of
bulk electrons and the charge corresponding to the surface
state constitutes only a small fraction of the total electronic
charge at the metal surfaces, as seen in figure 2. It is this
coexistence of such a surface state with bulk electrons at
some metal surfaces that can lead to the appearance of these
novel collective electronic oscillations, called acoustic surface
plasmons [34].
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2. Theory

The stopping power S(b, υ) of a particle with charge Z1

moving, at a distance b, parallel to a metal surface with velocity
υ can be expressed as [22, 28]

S(b, υ) = 2Z 2
1

υ

∫
dq

(2π)2

∫ ∞

0
dω ω Im[W (b, b, q, ω)]

× δ(ω − qυ), (1)

where W (b, b, q, ω) is the dynamical screened Coulomb
interaction, q is a two-dimensional vector along the surface and
q ≡ |q|. We assume translational invariance of the potential
and valence charge density along the surface of the target.
At low velocity one can define a distance dependent friction
coefficient γ (b) = S(b, υ)/υ. Normally it is independent
of the projectile velocity. Nevertheless, as it will be shown
below, this coefficient can also be velocity dependent even
for projectile velocities significantly smaller than the Fermi
velocity of the target electron system. In the case of a charged
particle traveling at large distances b from the metal surface,
equation (1) takes the form

S(b, υ) = 2Z 2
1

πυ2

∫ ∞

0
dq e−2qb

∫ qυ

0
dω

ω√
(qυ)2 − ω2

× Im[g(q, ω)], (2)

where the surface response function g(q, ω) is expressed in
terms of the density–density response function χ(z, z ′, q, ω)

[38]

g(q, ω) = −2π

q

∫
dz

∫
dz′ e−q(z+z′)χ(z, z′, q, ω). (3)

The surface response function g(q, ω) is a key quantity that
determines how the solid interacts with the environment. Some
well-known examples in which it plays a relevant role are
heat transfer [39], non-contact friction [40], molecule vibration
damping [41], etc.

We calculate χ(z, z ′, q, ω) in terms of the density
response function for non-interacting electrons χo(z, z′, q, ω)

using the random phase approximation:

χ(z, z′, q, ω) = χo(z, z′, q, ω)

+
∫

dz1

∫
dz2 χo(z, z1, q, ω)

2πe−q|z1−z2|

q

× χ(z2, z′, q, ω) (4)

with

χo(z, z′, q, ω) = 2
∑
i, j

ϕi(z)ϕ
∗
j (z)ϕ j(z

′)ϕ∗
i (z

′)

×
∫

dk
(2π)2

θ(EF − Ei) − θ(EF − E j )

Ei − E j + (ω + iη)
, (5)

where η is a positive infinitesimal that in the present

calculations was chosen to be 1 meV, Ei = εi + k
2
/(2mi ),

E j = ε j + (k + q)2/(2m j), and EF is the Fermi energy
of the system. Here, the energies εi and wavefunctions ϕi

are the solutions of the one-dimensional Schrödinger equation
that describes the system along the surface normal. The
effective masses mi and m j associated with the surface state

and bulk electrons have been taken to reproduce the realistic
surface band structure of the metal. The sums over i and j
include both occupied and unoccupied electronic states. Some
authors [23, 42] evaluate χ and χo in real space. Here we
adopt an approach based on the calculation of these quantities
in reciprocal space [24, 25]. Further calculation details of the
procedure followed to evaluate χ can be found in [43]. In
order to characterize the noble metal surfaces, we obtain εi

and ϕi by solving the Schrödinger equation with the use of
the one-dimensional model potential for the Cu(111), Ag(111),
and Au(111) surfaces reported in [32]. Each potential is
constructed to reproduce the key ingredients of the surface
electronic structure, namely the width and position of the
energy gap at the center of the surface Brillouin zone and the
energy positions of both the surface and first image states.

3. Calculation results

From equation (2) one can see that the stopping power S(b)

of a charged particle traveling in front of a metal surface
is determined by the imaginary part of the surface response
function, a key ingredient of the present calculations. Due
to the presence of the exponential term in the integrand of
equation (2), the dependence of S(b) on b at large distances
from the surface is determined by details of the surface
loss function Im[g(q, ω)] at small q . Moreover, for low
projectile velocities only the magnitude of Im[g(q, ω)] at small
energies plays a role (see integration limits in equation (2)).
The properties of Im[g(q, ω)] were intensively investigated
in the past with the jellium model [41]. In particular, it
was demonstrated that Im[g(q, ω)] for small q and small
ω is proportional to q and ω. Nevertheless, as shown in
figures 3–5, the surface loss function Im[g(q, ω)] of Cu(111),
Ag(111), and Au(111), is strongly inhomogeneous when the
realistic band structure, with a partially occupied surface state,
is incorporated in the model. Furthermore, the surface loss
function is dominated by the regions labeled as ‘2D + 3D’
which correspond to electron–hole pair excitations in the
surface state. Hence, for small q and ω, Im[g(q, ω)] is no
longer proportional to q . Additionally, the presence of an
acoustic surface plasmon [34, 44] at small q and ω (shown
by a solid line in figures 3–5) leads to a strong peak structure
in Im[g(q, ω)] as seen in figure 6. In figure 6 for comparison
we also show Im[g(q, ω)] obtained within the jellium model
for a mean electron radius rs = 2.67 a.u., which accounts for
the valence band electrons in copper. In the jellium model,
Im[g(q, ω)] has a featureless behavior in this (q − ω) domain,
in striking contrast to the realistic Cu(111) case. The left
and right borders of the ‘2D + 3D’areas in figures 3–5, are
determined by the binding energy, ESS

F , and effective mass,
m∗

SS, of the corresponding surface state as ω = υSS
F q +

q2/2m∗
SS and ω = −υSS

F q + q2/2m∗
SS, respectively. Here

υSS
F is the surface state Fermi velocity. For the surfaces under

study, we use experimentally determined values of ESS
F and

m∗
SS. For Cu(111), Ag(111), and Au(111) they are 0.44 eV and

0.42, 0.067 eV and 0.44, and 0.47 eV and 0.28, respectively.
This difference in the surface state characteristics for these
surfaces is reflected in the different size of the ‘2D + 3D’
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Figure 3. False-color plot of the normalized surface loss function
Im[g(q, ω)]/ω for the Cu(111) surface versus the two-dimensional
momentum q and energy ω. The phase-space regions where only
bulk intra-band electron–hole pair excitations are permitted are
denoted by ‘3D’. The region where the intra-band electron–hole
excitations within the surface state are additionally possible is
denoted by ‘2D + 3D’. The thick solid line represents dispersion of
an acoustic surface plasmon [34]. Two thin dashed lines limit the
upper borders of the phase-space regions where the excitations can
be produced by the moving charged particle with velocity
υ = 0.05 a.u. and 0.3 a.u., respectively. The horizontal long dashed
line shows the cut along which Im[g(q, ω)] is displayed in figure 6.

Figure 4. False-color plot of the normalized surface loss function
Im[g(q, ω)]/ω for the Ag(111) surface versus the two-dimensional
momentum q and energy ω. The phase-space regions where only
bulk intra-band electron–hole pair excitations are permitted are
denoted by ‘3D’. The region where the intra-band electron–hole
excitations within the surface state are additionally possible is
denoted by ‘2D + 3D’. The thick solid line represents dispersion of
an acoustic surface plasmon [34]. The horizontal long dashed line
corresponds to the cut along which Im[g(q, ω)] is presented in
figure 6.

areas. It is maximal for Cu(111) and minimal for Ag(111).
On the contrary, comparison between figures 3–6 reveals
that the amplitude of Im[g(q, ω)] follows another trend—
it is maximum for Ag(111) and significantly reduced at the
Au(111) surface.

All these facts strongly modify the asymptotic behavior
of γ (b, υ) and S(b, υ) (presented in figures 7, 8, and 9

Figure 5. False-color plot of the normalized surface loss function
Im[g(q, ω)]/ω for the Au(111) surface versus the two-dimensional
momentum q and energy ω. The phase-space regions where only
bulk intra-band electron–hole pair excitations are permitted are
denoted by ‘3D’. The region where the intra-band electron–hole
excitations within the surface state are additionally possible is
denoted by ‘2D + 3D’. The thick solid line represents dispersion of
an acoustic surface plasmon [34]. The horizontal long dashed line
corresponds to the cut along which Im[g(q, ω)] is presented in
figure 6.

Figure 6. Surface loss function Im[g(q, ω)] versus the
two-dimensional momentum q for ω = 0.25 eV (corresponds to the
cut along the horizontal long dashed line in figures 3–5). Solid,
dashed, and dashed–dotted lines stand for Cu(111), Ag(111), and
Au(111), respectively. The dotted line shows Im[g(q, ω)] calculated
within a jellium model with rs = 2.67 usually employed for
description of a Cu metal.

for Cu(111), Ag(111), and Au(111), respectively) at large
distances from the surface in comparison with the one expected
from the jellium model [23, 42]. Figures 7–9 demonstrate
clearly the non-monotonic behavior of γ (b, υ) and S(b, υ)

with the distance b and velocity υ. Thus at small b the stopping
power (friction coefficient), which is governed by the electron–
hole excitations in the bulk electronic system, increases almost
linearly (constant) with increasing projectile velocity, similarly
to results derived within the jellium model. As the distance
increases, the situation changes. In this case the relative role
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Figure 7. Friction coefficient γ (b, υ) (left) and stopping power
S(b, υ) (right) for a projectile of charge Z1 = 1 moving parallel to
the Cu(111) surface versus its distance b from the surface for some
values of velocity υ. Solid, long dashed–dashed, dashed, short
dashed, long dashed, dashed–dotted, dotted lines stand for υ = 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 a.u., respectively.

Figure 8. Friction coefficient γ (b, υ) (left) and stopping power
S(b, υ) (right) for a projectile of charge Z1 = 1 moving parallel to
the Ag(111) surface versus its distance b from the surface for some
values of velocity υ. Solid, long dashed–dashed, dashed, short
dashed, long dashed, dashed–dotted, dotted lines stand for υ = 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 a.u., respectively.

of excitations involving the surface state starts gradually to
be more important. Thus, for small velocities it leads to the
∼b−3 dependence of γ (b, υ) and S(b, υ) on distance b due to
electron–hole production within the surface state [31] instead
of the ∼b−4 law expected from the jellium model [10, 41].

In figure 10 we plot the friction coefficient and stopping
power for all three systems as a function of projectile velocity
at the distance b = 50 a.u. In the figure, it is clearly seen
that there is some threshold velocity at which an additional
energy loss channel arises. For all three surfaces the value of
this threshold velocity is different. As the velocity increases
further, γ (υ) and S(υ) reach a maximum and drop down for

Figure 9. Friction coefficient γ (b, υ) (left) and stopping power
S(b, υ) (right) for a projectile of charge Z1 = 1 moving parallel to
the Au(111) surface versus its distance b from the surface for some
values of velocity υ. Solid, long dashed–dashed, dashed, short
dashed, long dashed, dashed–dotted, dotted lines stand for υ = 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 a.u., respectively.

Figure 10. Friction coefficient γ (b, υ) (left) and stopping power
S(b, υ) (right) for a projectile of charge Z1 = 1 moving parallel to
the (111) surface of Cu (solid lines), Ag (dashed lines), and Au
(dashed–dotted lines) at the distance b = 50 a.u. versus projectile
velocity υ.

higher υ. Careful analysis of different constituents in the
integral of equation (2) reveals that this remarkable behavior
is a consequence of the presence in Im[g(q, ω)] of a strong
peak due to the acoustic surface plasmon existing in these
surfaces (see figures 3–5). Additionally, the quasi-linear
sound-like dispersion of the acoustic plasmon at small q leads
to a distance-decay of γ (b) and S(b) for projectile velocities
close to the surface state Fermi velocity, significantly slower
than the mentioned decay of ∼b−3. The surface state Fermi
velocities for the Cu(111), Ag(111), and Au(111) systems are
υSS

F = 0.28, 0.11, and 0.35 a.u., respectively. In this case the
decay is fitted by the ∼b−2 law. The origin of this is the above-
mentioned sound-like acoustic surface plasmon dispersion and
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the presence of the pole divergency in equation (2) in the
vicinity of the upper limit of the integral on ω. Hence the
main contribution to the integral comes from the region where
ω ≈ qυ. When the projectile velocity υ is close to the
group velocity of the acoustic surface plasmon (which almost
coincides with the surface state Fermi velocity [45]) a strong
increase of γ (b, υ) and S(b, υ) is observed. The subsequent
decrease of the friction coefficient and stopping power for
projectile velocities larger than υSS

F is explained by the fact
that the main contribution to the integral of equation (2) comes
in this case from the q − ω region where Im[g(q, ω)] is
determined by the bulk electron–hole excitations (the left ‘3D’
regions in figures 3–5) and which is significantly smaller than
in the ‘2D + 3D’ phase-space region.

Note that this peak-structure behavior of the friction
coefficient and stopping power can be severely affected by
excitations involving electrons from the occupied valence
d band [30, 46–48]. In the case of gold, the threshold
for this channel is somewhat lower than the threshold for
acoustic surface plasmon excitation. Nevertheless, in the low-
momentum limit these excitations cannot be produced by the
slow projectile. Hence, the asymptotic behavior of the friction
coefficient and stopping power should be correctly represented
by the present model.

We are not aware of any experiment which could be used
to test our findings. The problem with grazing scattering
of ions with surfaces is that in this kind of experiment the
ions are usually reflected close to the topmost layer of atoms
where the electronic density is high and most of the energy
loss takes place. From figures 7–9 it is clear that in order to
observe the predicted energy loss peak related to the excitations
of the acoustic surface plasmon, it is necessary to probe the
projectile surface distances longer than 5 a.u. The reason
is that one needs to avoid trajectories close to the surface,
since for these trajectories the predicted effect is masked by
the energy loss mechanism that takes place at short distances.
In this respect, analysis of the energy loss of ions traveling
through microcapillaries could be a good way to test our
predictions. Through microcapillaries the ions can cruise over
large distances (�1 μm) parallel to the surface at distances
around and below 100 nm. Therefore, in principle, it is possible
to probe energy losses at the necessary microscopically large
distances [23].

4. Conclusions

We have studied the stopping power, S, and friction coefficient,
γ , for a charged particle traveling parallel to the Cu(111),
Ag(111), Au(111) surfaces. We demonstrate that for large
distances and projectile velocities lower than the Fermi
velocity of the partly occupied quasi-two-dimensional s–pz
surface state, S and γ are dominated by electron–hole
excitations within the surface state. S and γ decrease with
increasing distance b from the surface with characteristic ∼b−3

decay instead of the ∼b−4 behavior expected from the jellium
and other simple models. Additionally we show that S and γ

behave non-monotonically with increasing velocity and reach
maximum values at υ close to the surface state Fermi velocity

υSS
F . At such velocities, the dominant contributions to S and γ

come from the excitation of the acoustic surface plasmon and
its decay with distance b obeys a characteristic ∼b−2 law. This
behavior of S and γ versus υ and b is related to the strongly
non-monotonic behavior of the surface loss function at small
ω and q for these surfaces which is governed by electron–
hole excitations within the surface state band and the acoustic
surface plasmon.
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